

Penn State Transportation Engineering and Safety Conference

Operational Considerations for Connected Vehicle Services Case Studies

John Estrada December 4, 2018

Agenda

Connected Vehicle: The Enabling Technology

- 2. CV and AV, Need Both?
- 3. Validate Your Installation
- 4. Monitor and Manage Your Installation

5. Questions

Connected Vehicle: the Enabling Technology

From Highways to Cities.

CV Services

Foundational services

> Travel Times, Traveler Information, Work Zone Warnings

> Operational Services

- Transit Signal Priority
- Predictive travel times
- Work Zone Notifications
- Corridor Data Warehouse and Analytics Platform
- > Performance measurements/metrics

>Safety

- > CV driven incident awareness
- End of Queue Warning
- Corridor condition warnings

Agenda

 Connected Vehicle: The Enabling Technology

2. CV and AV, Need Both?

- 3. Validate Your Installation
- 4. Monitor and Manage Your Installation
- 5. Questions

Plan for Technology and CAV Convergence

Source: USDOT

Uber Arizona Case

March 24, 2017

"Tempe police cited a driver for making an illegal left turn and hitting one of Uber's test Volvos while it was in self-driving mode. The **Uber SUV**, occupied by a test driver and an engineer in the passenger seat, flipped on its side and a third car was struck".

The **Honda** was turning left and did not see the oncoming **Uber** vehicle due to traffic in the other direction

The vehicles in the left most lanes were stopped but not blocking traffic so the **Honda** proceeded with its left turn.

The **Uber** was going 38 miles per hour, didn't see the **Honda**, and proceeded through the intersection.

The **Honda** hit the **Uber**, which proceed forward into a pole, flipped over and ran into two other cars.

Uber Arizona Case – with CV Technology

DSRC allows vehicles to communicate information, such as speed, bearing, and direction to nearby vehicles, even if not in the line of site.

However, with V2V it would have been notified that the **Uber** was coming even though it couldn't see it.

Also, the Uber would have been notified about the Honda and would have known to slow down, giving the Honda more time

The accident could have been avoided, other cars would have been safe and the Uber could proceed on its way

Let's Do The Math

(Don't worry there's no Quiz at the end)

- The V2V application Intersection Movement Assist would have provided enough information to each of the vehicles to warn the driver or software of the other vehicle
- >DSRC will provide information for at least 150 meters (longer in many intersections)
- The Uber Vehicle was traveling 38 miles per hour and the Honda was going about 10 mph, so they would have begun to get warnings 6.7 seconds before hitting each other
 - Uber 38 mph = 63.3 kph = 17.5 m/s
 - Honda 10 mph = 16.7 kph = 4.7 m/s
 - Total is 22.2 m/s (total speed heading toward each other)
 - It takes 6.7 seconds to traverse 150m at 22.2 m/s

>6.7 Seconds would be more than enough time for both vehicles to react, slow down and avoid each other.

Emergency Braking

Without V2V technology if the front car slams on its brakes, the last car will not know that this has happened if the middle car isn't paying attention. This can cause a multi-car pile up. Traditional ADAS/AV Sensors (Camera, Lidar, Radar) can't see through cars.

Emergency braking is best handled through V2V technology. As the front car quickly slows down this is announced via DSRC communication and then the last car can easily stop in time.

An option for trucks is to have video in the truck provide information to the car behind. A camera on the front of the truck streams video to the car behind so that that driver/AV system can "see through" the truck to see what is happening in front. When that front car brakes, the rear car will be notified. This has the advantage of not requiring DSRC in the front car.

V2V Platooning

Without V2X even autonomous vehicles will have to keep greater distance between vehicles. This takes up more road space and limits the speed at which the vehicles can travel With V2X the vehicles can stay closer together thus saving fuel and allowing more vehicles on an individual stretch of road which is increasingly important as the number vehicles increases.

Platooning Advantages

Without V2X even autonomous vehicles will have to wait and detect movement from the vehicle in front before moving forward once the light changes

With V2X the light can signal it is going to change, the vehicles can confirm they received the message and then proceed all at once saving time, fuel and road space.

Agenda

- Connected Vehicle: The Enabling Technology
- 2. CV and AV, Need Both?
- **3. Validate Your Installation**
- 4. Monitor and Manage Your Installation
- 5. Questions

Panasonic V2X Program

Connected Vehicles

Â

- B2B V2X RSU Development Program supporting Panasonic Smart City Initiatives
- Panasonic under MSA with Colorado DOT to provide a statewide V2X ecosystem
- State plans expanding to 1000 miles of V2X Corridor and 10,000 equipped vehicles beyond initial program

- Multi-Phase 12 mo Program
 - Base RSU Development Program
 - 100 unit I-70 90 mile V2X corridor deployment
 - C-V2X Pilot initiative in cooperation with Panasonic and Qualcomm completed by end of 2018

Modeling and Coverage Testing

- Software virtualization models signal coverage for new construction such as tunnels and overpasses
- Coverage Testing
 - Identifies optimal RSU placement
 - > C470 project average distance has been 500m-700m, greatest distance was 900m

For New Co Cab	nune Analyze Statistics Tel 1 🛅 👷 🛃 🔍 🎍 📾	epnony Loois Intern	B O O O I		9 & 8				
			Expression_ Clear	Apply	Save GN-Only				
Time	Source	Destination	Protocol	Length	stationID	latitude	longitude	headingValue	
1 0.000000	Kapsch_00:bb:54	Broadcast	CAM	168	1010084	-378266632	1449548661	2300	
2 0.999793	Kapsch_00:bb:54	Broadcast	CAM	176	1010084	-378267204	1449547784	2300	
3 1.999868	Kapsch_00:bb:54	Broadcast	CAM	193	1010084	-378269456	1449544239	2310	
4 2,999803	Kapsch_00:bb:54	Broadcast	CAM	211	1010084	-378271171	1449541608	2290	
5 4.001481	Kapsch_00:bb:54	Broadcast	CAM	21.9	1010084	-378271759	1449540748	2290	
6 5.000193	Kapsch_00:bb:54	Broadcast	CAM	237	1010084	-378273478	1449538120	2300	
7 6.000023	Kapsch_00:bb:54	Broadcast	CAM	254	1010084	-378275075	1449535372	2330	
B 7,000087	Kapsch_00:bb:54	Broadcast	CAM	262	1010084	-378275581	1449534432	2350	
9 8.000612	Kapsch_00:bb:54	Broadcast	CAM	280	1010084	-378277098	1449531612	2350	
10 9.000530	Kapsch_00:bb:54	Broadcast	CAM	297	1010084	-378278167	1449528488	2480	
11 10.000892	Kapsch_00:bb:54	Broadcast	CAM	306	1010084	-378278531	1449526263	2580	
12 11.000511	Kapsch_00:bb:54	Broadcast	CAM	323	1010084	-378278588	1449522859	2720	
13 12,000604	Kapsch_00:bb:54	Broadcast	CAM	340	1010084	-378277996	1449519544	2870	
14 13,000666	Kapsch_00:bb:54	Broadcast	CAM	349	1010084	-378277721	1449518461	2870	
15 14,000824	Kapsch 00:bb:54	Broadcast	CAM	366	1010084	-378277022	1449515188	2760	
16 14.921536	Kapsch_00:9b:38	Broadcast	CAM	188	88880010	-378223470	1449476480		
17 15.002230	Kapsch_00:bb:54	Broadcast	CAM	366	1010084	-378276748	1449510655	2720	
18 15.921493	Kapsch_00:9b:38	Broadcast	CAM	188	88880010	-378223470	1449476480		
19 16.007800	Kapsch_00:bb:54	Broadcast	CAM	366	1010084	-378276817	1449509521	2650	
20 17,000715	Kapsch_00:bb:54	Broadcast	CAM	366	1010084	-378277614	1449506272	2490	
21 17,921495	Kapsch 00:9b:38	Broadcast	CAM	188	88880010	-378223470	1449476480		
22 18,002548	Kapsch 00:bb:54	Broadcast	CAM	366	1010084	-378278444	1449504254	2420	
23 18, 921493	Kapsch 00:9b:38	Broadcast	CAM	188	88880010	-378223470	1449476480		
24 19,000736	Kapsch 00:bb:54	Broadcast	CAM	366	1010084	-378279350	1449502300	2390	
25 19, 921 537	Kapsch 00:9b:38	Broadcast	CAM	188	88880010	-378223470	1449476480		
26 20,000641	Kapsch 00:bb:54	Broadcast	CAM	366	1010084	-378281436	1449498596	7340	
27 21 000642	Kansch 00-hh-54	Renadrast	CAN	366	1010084	-378787470	1440406744	7340	
ame 1: 168 bytes	on wire (1344 bits).	168 bytes captu	red (1344 bits))					
diotap Header vC), Length 44								
EE 802.11 Data,	Flags:								
nical-Link Contr	0]								
Networking: Con	mon (TSB Single Hop)								
ic Transport Pr	otocol (Type B)								

No	Time	Source	Destination	Protocol	Length	stationID	latitude	longitude	heading	KML
1	0,000	Kapsch_00:bb:54	Broadcast	CAM	168	1010084	-378266632	1449548661	2300	144.9548661,-37.8266632,0
2	1,000	Kapsch_00:bb:54	Broadcast	CAM	176	1010084	-378267204	1449547784	2300	144.9547784,-37.8267204,0
3	2,000	Kapsch_00:bb:54	Broadcast	CAM	193	1010084	-378269456	1449544239	2310	144.9544239,-37.8269456,0
4	3,000	Kapsch_00:bb:54	Broadcast	CAM	211	1010084	-378271171	1449541608	2290	144.9541608,-37.8271171,0
5	4,001	Kapsch_00:bb:54	Broadcast	CAM	219	1010084	-378271759	1449540748	2290	144.9540748,-37.8271759,0
6	5,000	Kapsch_00:bb:54	Broadcast	CAM	237	1010084	-378273478	1449538120	2300	144.9538120,-37.8273478,0
7	6,000	Kapsch_00:bb:54	Broadcast	CAM	254	1010084	-378275075	1449535372	2330	144.9535372,-37.8275075,0
8	7,000	Kapsch_00:bb:54	Broadcast	CAM	262	1010084	-378275581	1449534432	2350	144.9534432,-37.8275581,0
9	8,001	Kapsch_00:bb:54	Broadcast	CAM	280	1010084	-378277098	1449531612	2350	144.9531612,-37.8277098,0
10	9,001	Kapsch_00:bb:54	Broadcast	CAM	297	1010084	-378278167	1449528488	2480	144.9528488,-37.8278167,0
11	10,001	Kapsch_00:bb:54	Broadcast	CAM	306	1010084	-378278531	1449526263	2580	144.9526263,-37.8278531,0
12	11,001	Kapsch_00:bb:54	Broadcast	CAM	323	1010084	-378278588	1449522859	2720	144.9522859,-37.8278588,0
13	12,001	Kapsch_00:bb:54	Broadcast	CAM	340	1010084	-378277996	1449519544	2870	144.9519544,-37.8277996,0
14	13,001	Kapsch_00:bb:54	Broadcast	CAM	349	1010084	-378277721	1449518461	2870	144.9518461,-37.8277721,0
15	14,001	Kapsch_00:bb:54	Broadcast	CAM	366	1010084	-378277022	1449515188	2760	144.9515188,-37.8277022,0
16	14,922	Kapsch_00:9b:38	Broadcast	CAM	188	88880010	-378223470	1449476480		144.9476480,-37.8223470,0
17	15,002	Kapsch_00:bb:54	Broadcast	CAM	366	1010084	-378276748	1449510655	2720	144.9510655,-37.8276748,0
18	15,921	Kapsch_00:9b:38	Broadcast	CAM	188	88880010	-378223470	1449476480		144.9476480,-37.8223470,0
19	16,008	Kapsch_00:bb:54	Broadcast	CAM	366	1010084	-378276817	1449509521	2650	144.9509521,-37.8276817,0
20	17,001	Kapsch_00:bb:54	Broadcast	CAM	366	1010084	-378277614	1449506272	2490	144.9506272,-37.8277614,0
21	17,921	Kapsch_00:9b:38	Broadcast	CAM	188	88880010	-378223470	1449476480		144.9476480,-37.8223470,0
22	18,003	Kapsch_00:bb:54	Broadcast	CAM	366	1010084	-378278444	1449504254	2420	144.9504254,-37.8278444,0
23	18,921	Kapsch_00:9b:38	Broadcast	CAM	188	88880010	-378223470	1449476480		144.9476480,-37.8223470,0
24	19,001	Kapsch_00:bb:54	Broadcast	CAM	366	1010084	-378279350	1449502300	2390	144.9502300,-37.8279350,0
25	19,922	Kapsch_00:9b:38	Broadcast	CAM	188	88880010	-378223470	1449476480		144.9476480,-37.8223470,0
										www.kapscn.net

Mounting and Installation

- Simplistic mounting approach / Custom or Proprietary
- PoE per USDOT RSU 4.1 Spec standards
- >O&M packages should be considered such as data storage

Kapsch OBU plus Bluetooth or Wi-Fi/Cell Modem.

RSU attached to a light transmitting SPaT, MAP, RSM and TIM Messages. This is the unit that is being validated. Insight on a tablet or smartphone. Connects to OBU over Wi-Fi or Bluetooth.

VSDP Insiaht

rocessed BSMs

"Type": "BSM", "Number": 46, "VehicleID": "00000089", "VehicleIass": "PASSENGEF "Latitude": 38.848427945, "Longitude": -77.216102464, "Speed": 10.48, "Elevation": 92.786, "Heading": 37.1142, "Self": true

"Type": "BSM", "Number": 85, "VehicleID": "00000066

"VehicleClass": "PASSENGER" "Latitude": "Unknown", "Longitude": "Unknown", "Speed": 0,

"Elevation": "UNKNOWN" "Heading": 0, "Self": false

Omnisight in the cloud records and plays back recorded data. Verifies SPaT and MAP data.

Ruphy Id (#20160722.001022.log Owner etsans									
ntersection Id : 2017 Automatic Verification		Manual Verification	Repor						
SPaT Verification		SPaT Message							
Errors :	3	RSU system clock is within 10 ms of UTC	С						
SPAT Frequency (50 to 150 ms over 10 sec) is valid	No	MinEndTime is within 100 ms of earliest phase change	C						
Message Timestamp is filled in	No	MaxEndTime is within 100 ms of earliest phase change	c						
Intersection State constuction time stamp filled in	No	MinuteOfTheYear and DSecond are present in each message and within 100 ms of UTC	C						
Signal Group Id non-zero	Yes	MAP Mossage							
Min End Time filled in	Yes	MAP is accurate within 0.5 meters	0						
Max End Time filled in	Yes	Node points are centered within each lane	0						
Likely Time filled in	No	Node points are at least 300 meters from stop bar	C						
MAP Verification		There are at least 2 Node points per lane	С						
Errors :	4	Node points are less than 0.5 meters perpendicularly from center of lane	0						
Map Frequency (950 to 1050 ms over 10 sec) is valid	No		_						
Map Message Issue Revision	3								
Map Intersection Revision	3								
Latitude	36.1342421								
Longitude	-115.1635243								
Lane Width	3.66								
Number of Ingress Lanes	7								
Number of Egress Lanes	7								
Lanes use delta offsets	No								
Allowed Maneuvers are filled in	No								
Connections are filled in	Yes								
Signal Groups are filled in	Yes								
	No								

Agenda

- Connected Vehicle: The Enabling Technology
- 2. CV and AV, Need Both?
- 3. Validate Your Installation
- 4. Monitor and Manage Your Installation

5. Questions

Cary, NC SPaT Demonstration

- Cary and NC DOT Collaborative Corridor
- Supports FHWA SPaT Challenge Initiative
- Multi-vendor RSU and OBU Interoperability
- Intersection Safety Focus
- Red Light Warning
- eWalk Pedestrian Safety
- Curve Speed Warning
- Speed Zone Warning

2018-2019

Establishes industry partnership

 \bigcirc

Revealing user and agency benefits

20 intersection V2X corridor

Collaboration with multiple vendors and Transportation agencies

Corridor Management

- Manage and Configure
 - > Locations
 - >RSUs
 - MAP Messages
- Receive and Process Real Time Alerts
- Monitor Real-Time Message Traffic
 - MAP Information (Blue & Green Lines)
 - > Traffic Lights
 - > Vehicles
 - > Pedestrians

Data Management

- Monitor Data Being Processed
 - > From RSUs
 - From OBUs
 - Other Sources
- Receive and Process Real Time Alerts
- Analytics for Gaining Future Value

Questions?

John Estrada Vice President, CV Sales & Business Development john.estrada@Kapsch.net

Kapsch TrafficCom

Kapsch TrafficCom North America 8201 Greensboro Drive, Suite 1002 McLean, VA 22102 USA Phone: +1.571.230.5265

www.kapsch.net

Please Note:

The content of this presentation is the intellectual property of Kapsch AG and all rights are reserved with respect to the copying, reproduction, alteration, utilization, disclosure or transfer of such content to third parties. The foregoing is strictly prohibited without the prior written authorization of Kapsch CarrierCom AG. Product and company names may be registered brand names or protected trademarks of third parties and are only used herein for the sake of clarification and to the advantage of the respective legal owner without the intention of infringing proprietary rights.